Pyrolysis of furan in a microreactor.

نویسندگان

  • Kimberly N Urness
  • Qi Guan
  • Amir Golan
  • John W Daily
  • Mark R Nimlos
  • John F Stanton
  • Musahid Ahmed
  • G Barney Ellison
چکیده

A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 μs. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) ⇌ α-carbene or β-carbene. The α-carbene fragments to CH2=C=O + HC≡CH while the β-carbene isomerizes to CH2=C=CHCHO. The formyl allene can isomerize to CO + CH3C≡CH or it can fragment to H + CO + HCCCH2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[CH3C≡CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the β-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH2=C=CHCHO produces H + CO + HCCCH2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pyrolysis of foundry sand resins: a determination of organic products by mass spectrometry.

Pyrolysis-gas chromatography-mass spectrometry (MS) was used to identify the major organic products produced by pyrolysis of three foundry sand resins: (i) Novolac and (ii) phenolic urethane (PU) (both phenol-formaldehyde based resins) and (iii) furan (furfuryl alcohol based resin). These resins are used in the metal casting industry as a "sand binder" for making cores (used to produce cavities...

متن کامل

Pyrolysis-gas chromatography-mass spectrometry of the yeast genera Cryptococcus and Rhodotorula

A comparative study of different species from the yeast genera Cyptococcus and Rhodotorula, isolated from rotted wood, was camed out using analytical pyrolysis-gas chromatography-mass spectrometry. The predominant compounds obtained were various alkanes, cyclic ketones, indolic compounds, alkanoic acids and furan derivatives, which are pyrolytic products of lipids, proteins and carbohydrates. T...

متن کامل

Fast Pyrolysis of Four Lignins from Different Isolation Processes Using Py-GC/MS

Pyrolysis is a promising approach that is being investigated to convert lignin into higher value products including biofuels and phenolic chemicals. In this study, fast pyrolysis of four types of lignin, including milled Amur linden wood lignin (MWL), enzymatic hydrolysis corn stover lignin (EHL), wheat straw alkali lignin (AL) and wheat straw sulfonate lignin (SL), were performed using pyrolys...

متن کامل

Gas Phase Kinetics of Volatiles from Biomass Pyrolysis. Note II: Furan, 2-methyl-furan, and 2,5-dimethylfuran

The aim of this work is to develop and discuss a lumped kinetic mechanism of furan, 2-methyl-furan, and 2,5-dimethylfuran to simulate the pyrolysis conditions, experimentally studied in shock tube and flow reactors and in a wide range of temperature and pressure. The comparisons between experimental data and model predictions support the validity of the lumped kinetic model, but also highlight ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 139 12  شماره 

صفحات  -

تاریخ انتشار 2013